Many studies of human language processing have shown that readers slow down at less frequent or less predictable words, but there is debate about whether frequency and predictability effects reflect separable cognitive phenomena: are cognitive operations that retrieve words from the mental lexicon based on sensory cues distinct from those that predict upcoming words based on context? Previous evidence for a frequency-predictability dissociation is mostly based on small samples (both for estimating predictability and frequency and for testing their effects on human behavior), artificial materials (e.g., isolated constructed sentences), and implausible modeling assumptions (discrete-time dynamics, linearity, additivity, constant variance, and invariance over time), which raises the question: do frequency and predictability dissociate in ordinary language comprehension, such as story reading? This study leverages recent progress in open data and computational modeling to address this question at scale. A large collection of naturalistic reading data (six datasets, >2.2 M datapoints) is analyzed using nonlinear continuous-time regression, and frequency and predictability are estimated using statistical language models trained on more data than is currently typical in psycholinguistics. Despite the use of naturalistic data, strong predictability estimates, and flexible regression models, results converge with earlier experimental studies in supporting dissociable and additive frequency and predictability effects.
Read full abstract