Abstract
This paper considers the problem of estimating parameters in a periodic regression in continuous time with a semimartingale noise by discrete time observations. Improved estimates for the regression parameters are proposed. It is established that under some general conditions these estimates have an advantage in the mean square accuracy over the least squares estimates. The asymptotic minimaxity of the improved estimates has been proved in the robust risk sense. The properties of the proposed procedure for the models with non-Gaussian noises of pulse type have been studied. The pulse disturbances have random intensity and occur at random times which form a Poisson process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.