Abstract
The paper considers the problem of estimating a periodic function in a continuous time regression model observed under a general semimartingale noise with an unknown distribution in the case when continuous observation cannot be provided and only discrete time measurements are available. Two specific types of noises are studied in detail: a non-Gaussian Ornstein–Uhlenbeck process and a time-varying linear combination of a Brownian motion and compound Poisson process. We develop new analytical tools to treat the adaptive estimation problems from discrete data. A lower bound for the frequency sampling, needed for the efficiency of the procedure constructed by discrete observations, has been found. Sharp non-asymptotic oracle inequalities for the robust quadratic risk have been derived. New convergence rates for the efficient procedures have been obtained. An example of the regression with a martingale noise exhibits that the minimax robust convergence rate may be both higher or lower as compared with the minimax rate for the “white noise” model. The results of Monte-Carlo simulations are given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.