Abstract

The paper considers the problem of estimating the parameters in a continuous time regression model with a non-Gaussian noise of pulse type. The vector of unknown parameters is assumed to belong to a compact set. The noise is specified by the Ornstein–Uhlenbeck process driven by the mixture of a Brownian motion and a compound Poisson process. Improved estimates for the unknown regression parameters, based on a special modification of the James–Stein procedure with smaller quadratic risk than the usual least squares estimates, are proposed. The developed estimation scheme is applied for the improved parameter estimation in the discrete time regression with the autoregressive noise depending on unknown nuisance parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.