Annelids feature a diverse range of regenerative abilities, but complete whole-body regeneration is less common, particularly in the context of the head and anterior body regeneration. This study provides a detailed morphological description of Syllis malaquini regenerative abilities. By replicating previous experiments and performing diverse surgical procedures, we explored the capacity of this species for whole-body regeneration. We detailed the precise timing of regeneration of particular structures such as the eyes, proventricle, pharyngeal tooth, nuchal organs, and body pigmentation after amputation. Our high-resolution scanning electron microscopy and confocal laser-scanning microscopy images provide details of the blastema region, revealing that while anal opening remains in connection to the exterior environment, oral opening is formed "de novo" during blastema differentiation. Additionally, we performed amputations to isolate fragments consisting of one, two, and three segments from the intestinal trunk region. We found that S. malaquini requires at least two to three segments to successfully regenerate the whole body. In addition, we verified a variable capacity to regenerate depending upon the gut region, with structures of the foregut greatly impairing some steps of the regenerative process. Our work notably addresses the gap in knowledge concerning gut formation and its impact on regenerative capabilities. Ongoing research is crucial to unravel the role of gut tissue specificity and plasticity during regeneration in annelids, and particularly in syllids.
Read full abstract