Abstract
High charge separation and transfer efficiency are considered as key factors of photocatalysts in wastewater treatment applications. In this work, a high performance photocatalyst g-C3N4@ZnTDA was designed and applied through a facile solvothermal strategy. The microstructural, morphological, physicochemical, and photoelectrochemical properties of g-C3N4@ZnTDA were fully characterized. The photocatalytic activity of g-C3N4@ZnTDA nanoparticles under visible light source in degrading the 2,4-dibromophenol(2,4-dB) contaminants was also successfully studied. Additionally, the g-C3N4@ZnTDA composite demonstrates easy operation and good regeneration ability, making it highly promising for the efficient removal of phenolic pollutants from wastewater. Besides, a novel reutilization method for used catalyst as flame retardant and for PU foams was successfully testified. The MCN-3 as a fire-safety coating could reduce the heat release and improve flame retardancy of PU composites. This work opens a new window for valuable inspiration and structural design of reutilized MOF composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.