Crane systems are essential systems utilized in industry and for research. Nevertheless, they are always affected by endogenous and exogenous disturbances, which may generate undesirable payload oscillations, compromising people’s security and the system itself. Thus, to deal with these issues and control these mechatronic systems efficiently, this manuscript develops a novel robust observer-based proportional-retarded controller for perturbed two-dimensional cranes, considering variation in the rope length. This novel scheme makes the trolley follow a desired reference signal while reducing the payload variations. The controller structure allows for compensating disturbances, while a new control approach introduces artificial delays that stabilize the closed-loop system and attain the desired control objective. A formal theoretical analysis demonstrates the validity of the new proposal. Then, experimental results show the outstanding performance of the proposed control scheme and its superior performance against other methodologies from the literature.