Photovoltaic distributed generation (PVDG) is a noteworthy form of distributed energy generation that boasts a multitude of advantages. It not only produces absolutely no greenhouse gas emissions but also demands minimal maintenance. Consequently, PVDG has found widespread applications within distribution networks (DNs), particularly in the realm of improving network efficiency. In this research study, the dingo optimization algorithm (DOA) played a pivotal role in optimizing PVDGs with the primary aim of enhancing the performance of DNs. The crux of this optimization effort revolved around formulating an objective function that represented the cumulative active power losses that occurred across all branches of the network. The DOA was then effectively used to evaluate the most suitable capacities and positions for the PVDG units. To address the power flow challenges inherent to DNs, this study used the Newton–Raphson power flow method. To gauge the effectiveness of DOA in allocating PVDG units, it was rigorously compared to other metaheuristic optimization algorithms previously documented in the literature. The entire methodology was implemented using MATLAB and validated using the IEEE 33-bus DN. The performance of the network was scrutinized under normal, light, and heavy loading conditions. Subsequently, the approach was also applied to a practical Ajinde 62-bus DN. The research findings yielded crucial insights. For the IEEE 33-bus DN, it was determined that the optimal locations for PVDG units were buses 13, 25, and 33, with recommended capacities of 833, 532, and 866 kW, respectively. Similarly, in the context of the Ajinde 62-bus network, buses 17, 27, and 33 were identified as the prime locations for PVDGs, each with optimal sizes of 757, 150, and 1097 kW, respectively. Remarkably, the introduction of PVDGs led to substantial enhancements in network performance. For instance, in the IEEE 33-bus DN, the smallest voltage magnitude increased to 0.966 p.u. under normal loads, 0.9971 p.u. under light loads, and 0.96004 p.u. under heavy loads. These improvements translated into a significant reduction in active power losses—61.21% under normal conditions, 17.84% under light loads, and 33.31% under heavy loads. Similarly, in the case of the Ajinde 62-bus DN, the smallest voltage magnitude reached 0.9787 p.u., accompanied by an impressive 71.05% reduction in active power losses. In conclusion, the DOA exhibited remarkable efficacy in the strategic allocation of PVDGs, leading to substantial enhancements in DN performance across diverse loading conditions.