Abstract

This paper discusses a comprehensive study on reduction of power (active and reactive) losses in transmission lines using a second generation FACTS device, Static Synchronons Series Compensator (SSSC). Modern restructured power systems sometimes operate with heavily loaded lines resulting in power losses and higher voltage deviations, which may lead to mal-operation of power system and eventual collapse of the system. This is mainly due to continuous and uncertain growth in demand for electrical power. The paper presents a methodology to solve the problem of power losses in the Nigerian 28 – bus power system by incorporating Static Synchronons Series Compensator in the network using Newton-Rahson power flow algorithm. Simulation of power flow solution without and with the FACTS device was done using a Matlab software. The results showed that the maximum power (active and reactive) loss in the system without SSSC occurred in the transmission line connecting bus 17 (Jebba) to bus 23(Shiroro) and a 19.32% loss reduction was obtained on the line after the incorporation of the SSSC FACTS device giving a power saving of 80.68%. The total system active and reactive power losses before the application of SSSC was 205.183MW and 1594.683MVAR respectively. However, when the FACTS device was applied at the weak buses the total system active and reactive power losses reduced to 144.571MW and 1136.863MVAR respectively giving a percentage loss reduction in active and reactive power of 29.54% and 28.71% respectively resulting in a power saving of 70.46% and 71.29%. Hence, more power was available in the network when compared to the base case due to the installation of SSSC. Also an improvement in the voltage magnitude at the weak buses and other buses were noticed as they were all maintained at 1.0 PU.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.