Wood-based panels covered by melamine-impregnated paper are widely used in floors and furniture, due to its good surface texture, hardness, wear resistance, and waterproof function. However, there are still some problems, such as formaldehyde release from the impregnated resin, non-wood touch, and complex preparation processes. Therefore, this study designed glycidyl methacrylate (GMA) and ethyleneglycol dimethacrylate (EGDMA), combined with maleic anhydride (MAN) as a reactive catalyst, to build an active monomers system. It was first impregnated into poplar veneers, and then in-situ polymerized within the veneer using a hot pressing process, which realized the gluing of the veneer onto the wood-based panel substrate, synchronously. Such treatment aims to obtain wood-based panel composites decorated by the modified veneer, with real solid wood touch feeling, satisfied surface properties, and environment friendly glue bonding. The results indicated that the optimized reaction ratio of the active monomers (GMA:EGDMA) was 2:1 (molar ratio), and the maleic anhydride addition accounted for 6 wt.% of the total monomers. Under the optimized hot pressing condition, the modified veneer closely bonded to the wood-based panel substrate without obvious interfacial gaps. The hardness, abrasion resistance, modulus of rupture, and water resistance of the composites were significantly improved. Such results indicate that the treatment realized the perfect merging of solid wood touch feeling, environment friendly feature, and excellent properties of the composite. It was highly expected to replace the traditional melamine-impregnated paper to decorate wood-based panels, and could be potentially applied as surface decorating materials in wide areas of desktop, floor, cupboard, wardrobe, and so on.
Read full abstract