In this paper, we introduce a physics-guided deep learning approach for high-quality, real-time Fourier-domain optical coherence tomography (FD-OCT) image reconstruction. Unlike traditional supervised deep learning methods, the proposed method employs unsupervised learning. It leverages the underlying OCT imaging physics to guide the neural networks, which could thus generate high-quality images and provide a physically sound solution to the original problem. Evaluations on synthetic and experimental datasets demonstrate the superior performance of our proposed physics-guided deep learning approach. The method achieves the highest image quality metrics compared to the inverse discrete Fourier transform (IDFT), the optimization-based methods, and several state-of-the-art methods based on deep learning. Our method enables real-time frame rates of 232 fps for synthetic images and 87 fps for experimental images, which represents significant improvements over existing techniques. Our physics-guided deep learning-based approach could offer a promising solution for FD-OCT image reconstruction, which potentially paves the way for leveraging the power of deep learning in real-world OCT imaging applications.