Abstract

BackgroundThis study used optical coherence tomography (OCT) to observe real-time internal gap formation in both bulk-fill and conventional resin composites. It aimed to provide a quantitative analysis of variations, addressing the inconclusive nature of microleakage assessment caused by differences in testing methods. MethodsFifty extracted third molars prepared with Class I cavities, were divided into five groups (n = 10). Conventional resin Filtek Z350 XT (FZX) was applied with a double-layer filling of 2 mm per layer. Bulk-fill resins X-tra fil (XTF), Filtek Bulk Fill Posterior Restorative (FBP), Surefil SDR Flow + (SDR), and Filtek Flowable Restorative (FFR) were applied with a single-layer filling of 4 mm. Real-time OCT imaging was conducted during light curing. Post-curing, the entire sample was OCT-scanned. Following this, ImageJ software was used to measure the gap (G1 %). Subsequently, thermal cycling (TC) (5000 times, 5 °C–55 °C) was applied, followed by OCT scanning to calculate the gap (G2 %) and ΔG%. Data were analyzed using two-way repeated measures ANOVA, Kruskal-Wallis test, and Duncan's test (α=0.05). ResultsThere was no significant difference in G1 % among the groups (p > 0.05). Following TC, FZX exhibited the highest G2 %, succeeded by FFR, FBP, XTF, and SDR, with SDR demonstrating the lowest G2 % (p < 0.05). FZX showed the highest ΔG% (p < 0.05), while SDR exhibited the lowest ΔG% (p < 0.05). ConclusionOCT proves to be a promising tool for detecting microleakage. TC exerted a more significant negative impact on conventional resin. Surefil SDR Flow + displayed the least microleakage, both before and after TC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call