Abstract Lead (Pb)-based materials are very effective in radiation shielding due to their high density of Pb. However, they pose health risks to humans because of the toxicity of lead. As a result, the investigation of radiation shielding properties of various lead-free glass materials has drawn a lot of attention from researchers. In this work, the γ radiation competence of the Bi2O3–ZnO–B2O3–SiO2 glass network was investigated, for the first time in the 0.015–15 MeV energy range, using Phy-X/PSD and XCOM software systems. The results showed that 45Bi2O3–5ZnO–20B2O3–30SiO2 glass sample has the highest linear attenuation coefficient, mass attenuation coefficient, and effective atomic number, and it has the lowest half-value layer, tenth-value layer, and mean-free path. Therefore, 45Bi2O3–5ZnO–20B2O3–30SiO sample is more effective on γ ray shielding than 10Bi2O3–40ZnO–20B2O3–30SiO, 20Bi2O3–30ZnO–20B2O3–30SiO, 30Bi2O3–20ZnO–20B2O3–30SiO, and 40Bi2O3–10ZnO–20B2O3–30SiO samples. The comparison of the results with the literature also revealed that the 45Bi2O3–5ZnO–20B2O3–30SiO glass sample is even more effective than some of Bi2O3-based glass systems, which were recently developed in the literature, by at least a factor of 2.
Read full abstract