Two-dimensional (2D) MXenes stand out as promising platforms for surface-enhanced Raman scattering (SERS) sensing owing to their metallic feature, various compositions, high surface area, compatibility with functionalization, and ease of fabrication. In this work, we report a high-performance 2D titanium carbonitride (Ti3CN) MXene SERS substrate. We reveal that the abundant electronic density of states near the Fermi level of Ti3CN MXene boosts the efficiency of photo-induced charge transfer at the interface of Ti3CN/molecule, resulting in significant Raman enhancement. The SERS sensitivity of Ti3CN MXene is further promoted through a 2D morphology regulation and molecular enrichment strategies. Moreover, prohibited drugs are detectable on this substrate, presenting the potential of trace-amount analysis on Ti3CN MXene. This work provides a deep insight of the SERS mechanisms of Ti3CN MXene and broadens the practical application of transition metal carbonitride MXene SERS substrates.
Read full abstract