Abstract
Surface-enhanced Raman spectroscopy (SERS), as an emerging molecular-level detection technology, has attracted considerable research attention, especially in the context of substrate materials exhibiting Raman enhancement effects. Membrane materials, owing to their commendable uniformity, stability, and ease of modification, hold a pivotal position in the landscape of SERS substrate materials. However, existing SERS substrates based on membrane materials have limited adaptability to a spectrum of extreme environments, including but not limited to high or low pH, elevated salinity, and corrosive solutions. Additionally, SERS substrate materials are synonymous with “waste” and “high investment” because of their inherent disposable nature. This study introduces a pioneering approach, presenting a polymer composite membrane founded on epoxy resin, cellulose paper, and nanometal particles as a novel SERS substrate material. Given the outstanding stability of epoxy resin, the substrate material exhibits normal functionality in environments ranging from −80 ℃ to 100 ℃, with pH levels spanning 1 to 13, and in highly acidic solutions (concentration ≤3 %) and highly alkaline solutions (concentration ≤0.1 M). Moreover, the cleanability inherent in the polymer composite membrane renders the substrate material recyclable. Experimental findings reveal that even after six repeated uses, the substrate material sustains a stable Raman signal enhancement effect. The integration of recyclability and heightened stability makes this SERS substrate material a promising candidate for real-time monitoring and batch testing in chemical production processes or other complex environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.