Regional coupled modeling is one of the frontiers of regional climate modeling, but intercomparison has not been well coordinated. In this study, a community regional climate model, WRF4, with a resolution of 15 km, was coupled with a high-resolution (0.1°) North Pacific Ocean model (LICOM_np). The performance of the regional coupled model, WRF4_LICOM, was compared to that of another regional coupled model, RegCM4_LICOM, which was a coupling of version 4 of the Regional Climate Model (RegCM4) with LICOM_np. The analysis focused on the 2005 western North Pacific summer monsoon rainfall. The results showed that the regional coupled models with either RegCM4 or WRF4 as their atmospheric model component simulated the broad features over the WNP reasonably well. Quantitative intercomparison of the regional coupled simulations exhibited different biases for different climate variables. RegCM4_LICOM exhibited smaller biases in its simulation of the averaged June–July–August SST and rainfall, while WRF4_LICOM better captured the tropical cyclone (TC) intensity, the percentage contributions of rainfall induced by TCs to the total rainfall, and the diurnal cycle of rainfall and stratiform percentages, especially over land areas. The different behaviors in rainfall simulated by the two models were partly ascribed to the behaviors in the simulated western North Pacific subtropical high (WNPSH). The stronger (weaker) WNPSH in WRF4_LICOM (RegCM4_LICOM) was driven by overestimated (underestimated) diabatic heating, which peaked at approximately 450 hPa over the region around the Philippines in association with different condensation-radiation processes. Coupling of WRF4 with LIOCM is a crucial step towards the development of the next generation of regional earth system models at the Chinese Academy of Sciences.
Read full abstract