AbstractWe investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly perturbed digraph. We show that for every $\delta \in (0,1)$ there exists $C = C(\delta ) \gt 0$ such that the following holds. Let $D_0$ be an $n$ -vertex digraph with minimum semidegree at least $\delta n$ and suppose that each edge of the union of $D_0$ with a copy of the random digraph $\mathbf{D}(n,C/n)$ on the same vertex set gets a colour in $[n]$ independently and uniformly at random. Then, with high probability, $D_0 \cup \mathbf{D}(n,C/n)$ has a rainbow directed Hamilton cycle.This improves a result of Aigner-Horev and Hefetz ((2021) SIAM J. Discrete Math.35(3) 1569–1577), who proved the same in the undirected setting when the edges are coloured uniformly in a set of $(1 + \varepsilon )n$ colours.
Read full abstract