Abstract
We study approximate decompositions of edge‐colored quasirandom graphs into rainbow spanning structures: an edge‐coloring of a graph is locally ‐bounded if every vertex is incident to at most edges of each color, and is (globally) ‐bounded if every color appears at most times. Our results imply the existence of: (1) approximate decompositions of properly edge‐colored into rainbow almost‐spanning cycles; (2) approximate decompositions of edge‐colored into rainbow Hamilton cycles, provided that the coloring is ‐bounded and locally ‐bounded; and (3) an approximate decomposition into full transversals of any array, provided each symbol appears times in total and only times in each row or column. Apart from the logarithmic factors, these bounds are essentially best possible. We also prove analogues for rainbow ‐factors, where is any fixed graph. Both (1) and (2) imply approximate versions of the Brualdi‐Hollingsworth conjecture on decompositions into rainbow spanning trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.