Abstract
AbstractLet be drawn uniformly from all m‐edge, k‐uniform, k‐partite hypergraphs where each part of the partition is a disjoint copy of . We let be an edge colored version, where we color each edge randomly from one of colors. We show that if and where K is sufficiently large then w.h.p. there is a rainbow colored perfect matching. I.e. a perfect matching in which every edge has a different color. We also show that if n is even and where K is sufficiently large then w.h.p. there is a rainbow colored Hamilton cycle in . Here denotes a random edge coloring of with n colors. When n is odd, our proof requires for there to be a rainbow Hamilton cycle. © 2015 Wiley Periodicals, Inc. Random Struct. Alg., 48, 503–523, 2016
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.