Background The tumor burden within the axillary lymph nodes (ALNs) constitutes a pivotal factor in breast cancer, serving as the primary determinant for treatment decisions and exhibiting a close correlation with prognosis. Objective This study aimed to investigate the potential of ultrasound-based radiomics and clinical characteristics in non-invasively distinguishing between low tumor burden (1-2 positive nodes) and high tumor burden (more than 2 positive nodes) in patients with node-positive breast cancer. Methods A total of 215 patients with node-positive breast cancer, who underwent preoperative ultrasound examinations, were enrolled in this study. Among these patients, 144 cases were allocated to the training set, 37 cases to the validation set, and 34 cases to the testing set. Postoperative histopathology was used to determine the status of ALN tumor burden. The region of interest for breast cancer was delineated on the ultrasound image. Nine models were developed to predict high ALN tumor burden, employing a combination of three feature screening methods and three machine learning classifiers. Ultimately, the optimal model was selected and tested on both the validation and testing sets. In addition, clinical characteristics were screened to develop a clinical model. Furthermore, Shapley additive explanations (SHAP) values were utilized to provide explanations for the machine learning model. Results During the validation and testing sets, the models demonstrated area under the curve (AUC) values ranging from 0.577 to 0.733 and 0.583 to 0.719, and accuracies ranging from 64.9% to 75.7% and 64.7% to 70.6%, respectively. Ultimately, the Boruta_XGB model, comprising five radiomics features, was selected as the final model. The AUC values of this model for distinguishing low from high tumor burden were 0.828, 0.715, and 0.719 in the training, validation, and testing sets, respectively, demonstrating its superiority over the clinical model. Conclusions The developed radiomics models exhibited a significant level of predictive performance. The Boruta_XGB radiomics model outperformed other radiomics models in this study.
Read full abstract