Abstract

Rationale and objectivesPreoperative differentiation of malignant tumors (MT), pleomorphic adenomas (PA), and other benign tumors of the parotid gland is critical to clinical strategy, this study aimed to develop and validate a T2-weighted image (T2WI) based radiomics model through machine learning approaches for the triple classification of parotid gland tumors. Materials and methodsWe retrospectively enrolled 147 patients from January 2010 to July 2022. T2WIs were used to extract radiomics features. Max-Relevance and Min-Redundancy (mRMR) and Extreme Gradient Boosting (XGBoost) algorithms were used to select features. Using a 5-fold cross-validation strategy, radiomics models were constructed using a Support Vector Machine (SVM), Logistic Regression (LR), and k-Nearest Neighbor (KNN) for the triple classification of parotid tumors. The three models were evaluated and compared using the receiver operator characteristic (ROC) curve, sensitivity, specificity, and accuracy. ResultsA total of 1057 radiomics features were extracted, and 8 features were selected to developed the radiomics model, including First-order Median, First-order Skewness, First-order Minimum, Original_shape_Flatness, Glcm Inverse Variance, Glcm Inverse Variance, Glszm Low Gray Level Zone Emphasis, and Glszm Small Area Low Gray Level Emphasis. The mean area under the curves (AUCs) for the radiomics models in training and validation sets through LR, SVM and KNN were 0.85 and 0.80, 0.85 and 0.80 and 0.83 and 0.79, respectively. ConclusionThe T2WI-based radiomics models through LR, SVM and KNN demonstrated good performance in the triple classification of parotid tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.