Abstract

ObjectiveVariability exists in the subjective delineation of tumor areas in MRI scans of patients with spinal bone metastases. This research aims to investigate the efficacy of the nnUNet radiomics model for automatic segmentation and identification of spinal bone metastases. MethodsA cohort of 118 patients diagnosed with spinal bone metastases at our institution between January 2020 and December 2023 was enrolled. They were randomly divided into a training set (n = 78) and a test set (n = 40). The nnUNet radiomics segmentation model was developed, employing manual delineations of tumor areas by physicians as the reference standard. Both methods were utilized to compute tumor area measurements, and the segmentation performance and consistency of the nnUNet model were assessed. ResultsThe nnUNet model demonstrated effective localization and segmentation of metastases, including smaller lesions. The Dice coefficients for the training and test sets were 0.926 and 0.824, respectively. Within the test set, the Dice coefficients for lumbar and thoracic vertebrae were 0.838 and 0.785, respectively. Strong linear correlation was observed between the nnUNet model segmentation and physician-delineated tumor areas in 40 patients (R2 = 0.998, P < 0.001). ConclusionsThe nnUNet model exhibits efficacy in automatically localizing and segmenting spinal bone metastases in MRI scans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.