Multidrug-resistant Klebsiella pneumoniae strains are regularly involved in hospital outbreaks. This study describes an ESBL-producing K. pneumoniae clone (ST607-K25) responsible for a nosocomial outbreak in a neonatal intensive care unit. Fourteen strains isolated from 13 patients were included. Antimicrobial susceptibility testing was performed by the agar diffusion method. A clonal link was first investigated by fingerprinting (ERIC-PCR and REP-PCR) then confirmed by MLST. Characterization was performed by molecular detection and identification of several drug resistance and virulence determinants. All strains expressed the same antibiotype, combining ESBL production, fluoroquinolones and aminoglycoside resistance, except for one which remained susceptible to fluoroquinolones. Fingerprinting methods confirmed the clonal link and MLST identified a ST607 clone. Molecular investigations revealed: (I) genes encoding for two narrow-spectrum beta-lactamases (SHV-1 and TEM-1) and an ESBL (CTX-M-15); (II) absence of any chromosomal mutation in quinolone resistance-determining- regions (QRDR) of gyrA/gyrB and parC/parE genes; (III) genes encoding for three plasmid-mediated quinolone-resistance (PMQR) determinants: oqxAB (14/14), aac(6')-Ib-cr (14/14) and qnrB (13/14); (IV) production of a K25 capsule; and (V) carriage of three genes encoding for virulence factors: mrkD (type 3 fimbriae) (14/14), ybts (yersiniabactin) (12/14) and entB (enterobactin) (14/14). We described a multidrug-resistant Kp ST607 clone responsible for a nosocomial outbreak in vulnerable and premature newborns. Molecular investigations allowed us to identify several resistance factors responsible for ESBL production (CTX-M-15) and quinolone resistance (three PMQR determinants). The detection of a gene (ybtS) belonging to the high-pathogenicity island yersiniabactin could partly explain its high colonization and diffusion potential.
Read full abstract