Abstract

Background: Enterobacteriaceae causes many types of infections which are often treated with quinolones and fluoroquinolone (Q/FQ). The resistance mechanisms to Q/FQ are usually associated with mutations in the quinolone resistance determining region which alter the conformation of target amino acid residues within the protein and in the qnr genes. This study aimed at determining the antimicrobial resistant profile of a sample of Enterobacteriaceae from Cameroon and the genetic diversity in quinolone-resistant isolates in view of implementing a better management, treatment, control and prevention of the transmission of these resistant strains. Methods: Identification and antimicrobial susceptibility testing was done using VITEK 2. The detection of plamid-mediated quinolone resistance (PMQR) genes was carried out using the conventional PCR method. Sequencing was done using the Applied Biosystem 3500 genetic analyser. DNA fingerprint was obtained using Pulsed-Field Gel electrophoresis. Results: Among 440 Enterobacteriaceae, the most prevalent genera were: Escherichia 178/440 (39.5%); Klebsiella 148/440 (33.6%); Enterobacter 35/440 (8%); Pantoea 28/440 (6.4%); Proteus 14/440 (3.2%) Salmonella 13/440 (3%). Ampicillin resistance showed the highest prevalence with 371/440 (81%) and Imipenem the lowest resistance 9/440 (2.1%). The ciprofloxacin resistance rate was 161/440 (36.6%). The detected plasmid mediated quinolone resistance (PMQR) genes were: qnrA, 2/161 (1.2%); qnrB, 31/161 (19.3%); qnrS, 13/161 (8.1%): Aac (6')Ib-cr, 84/161 (52.2%) and qepA, 3/161 (1.9%). There were several mutations in the parC gene of Klebsiella leading to S80D and S80N substitutions. Two pairs of Klebsiella peumoniae strains were phenotypically and genotypically identical with 100% similarity in the dendrogramme. Conclusion: This study showed that quinolone resistance was high. The PMQR genes contributing to this resistance were diverse. This high PMQR indicates that there has been an unknown circulation of these genes in our community. To avoid the rapid dissemination of these PMQR genes continuous surveillance of antimicrobial resistance should be carried out not only in humans but also in animals to monitor the evolution of these genes.

Highlights

  • The Enterobacteriaceae is a very important family of bacteria with over 80% of the isolates being of medical importance among the Gram-negative bacilli [1]

  • The plasmid-mediated quinolone resistance (PMQR) genes contributing to this resistance were diverse. This high PMQR indicates that there has been an unknown circulation of these genes in our community

  • To avoid the rapid dissemination of these PMQR genes continuous surveillance of antimicrobial resistance should be carried out in humans and in animals to monitor the evolution of these genes

Read more

Summary

Introduction

The Enterobacteriaceae is a very important family of bacteria with over 80% of the isolates being of medical importance among the Gram-negative bacilli [1]. Most infections caused by this family are often treated using the Fluoroquinolones (FQ). The use of this class of antimicrobial accounts for up to 11% of the total prescriptions of antimicrobials in human medicine globally [2] [3]. Enterobacteriaceae causes many types of infections which are often treated with quinolones and fluoroquinolone (Q/FQ). This study aimed at determining the antimicrobial resistant profile of a sample of Enterobacteriaceae from Cameroon and the genetic diversity in quinolone-resistant isolates in view of implementing a better management, treatment, control and prevention of the transmission of these resistant strains. The detection of plamid-mediated quinolone resistance (PMQR) genes was carried out using the conventional PCR method. The detected plasmid mediated quinolone resistance (PMQR) genes were: qnrA, 2/161 (1.2%); qnrB, 31/161 (19.3%); qnrS, 13/161 (8.1%): Aac (6')Ib-cr, 84/161

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.