The output window of a high-power laser system is vulnerable to damage, and this is the main limiting factor on the power scaling and structure integrity of the laser system. In endeavoring to obtain higher output powers from the laser system, the impact of the thermal and mechanical effects and the damage mechanism of the output window must be considered. In order to study these issues, a thermal model of the laser window is established based on the heat transfer and thermoelastic theories, and the expressions for the transient thermal and mechanical stress distributions of the output window are deduced in terms of the integral-transform method. Taking the infrared quartz window material as an example, the temperature and mechanical field distributions of a high-power all-solid-state 2-μm laser system window are simulated, and the laser-induced damage mechanism is deeply analyzed. The calculation results show that the laser window-induced damage is mainly caused by melting damage when the temperature exceeds the melting point of the material. The presented theoretical analysis and numerical simulation results are significant for the design and optimization of high-power laser windows. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
Read full abstract