Abstract

This study proposes a novel fluidized receiver for absorbing concentrated solar light at high temperatures. Previously, a tubular receiver and a volumetric receiver were developed to make high-temperature air for a solar gas turbine system. The aim was to combine these elements with a tower reflector; however, it was challenging to install these heavy receivers on the top of the tower. Currently, a fluidized receiver prototype is tested by a 3 kWh solar simulator in preparation for a field test at the Miyazaki beam-down reflector system. The fluid dynamics of the prototype receiver is numerically investigated. The currently treated receiver is an inner-circulating fluidized bed spouted by concentric gas streams with high and low velocities in the center and outer annulus, respectively. The draft tube is submerged in the particles to organize particle circulation. Concentrated light irradiates the particles through a quartz window at the top of the receiver container. Such a fluidized bed was first adopted by Kodama et al. for thermochemical reactions; however, it is currently pursued for its potential as a high-temperature receiver aimed at concentrated solar power generation. Experiments of the prototype receiver (inner diameter = 45mm) demonstrated that the inner particles are heated to a temperature greater than 900°C and that an increase of the central gas velocity removes the excess temperature near the particle bed surface. A numerical computation suggests that the large-scale circulation of particles leads to the activation of thermal mixing. The currently proposed receiver is thus expected to attenuate re-radiation losses likely to occur in a conventional volumetric porous receiver. The scale-up of the receiver is being considered by the numerical computation for a field test in the Miyazaki 100 kWh beam-down reflector system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call