The objective of this paper is to enhance the vibration damping capabilities of magnetorheological (MR) semi-active suspension by utilizing a self-tuning LQG control method. Firstly, to determine the mechanical model of MR damper using the hyperbolic tangent model, mechanical experiments were performed with a damping force test machine under various input excitations. Experimental and simulation data were compared to confirm the accuracy of the mechanical model for MR damper. The MR damper is then incorporated into the vehicle’s semi-active suspension system to create a quarter-car suspension model. In order to tackle the problems associated with low control accuracy and poor dynamic adjustment in traditional LQG controllers where the weighting matrix coefficients are difficult to determine, a self-tuning LQG controller based on gravity search algorithm (GSA-LQG) was designed. Finally, the designed controller performance was evaluated by the simulation and experimental results obtained from the random and sinusoidal excitation roads. Experimental data reveal that when subjected to GSA-LQG control, the suspension control performance is considerably enhanced compared to the passive control, PID control and conventional LQG control suspension. Based on these outcome, it can be concluded that the proposed algorithm is effective and the experimental platform is feasible.