Abstract

A key factor in the design of a car is the comfort and safety of its passengers. The quarter-car suspension system is a feature of the car that ensures load-carrying capacity as well as comfort and safety. It comprises links, springs, and shock absorbers (dampers). Due to its significance, several research has been conducted, to increase its road handling and holding capability while trying to keep its cost moderate. To enhance customer comfort and load carrying, the road holding capacity of an active quarter car suspension was improved/controlled in this study, using the Global Best Inertia Weight Modified Particle Swarm Optimization Algorithm. The observation of the closed loop and open loop systems after designing and simulating on MATLAB reveals a significant improvement in the closed loop system's road holding ability compared to the open loop, in that, when the system was subjected to pothole, the deflection of sprung mass reached steady state in 37.37 seconds as opposed to 7000 seconds for the open loop.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call