The discrete phase space and continuous time representation of relativistic quantum mechanics are further investigated here as a continuation of paper I.1 The main mathematical construct used here will be that of an area filling Peano curve. We show that the limit of a sequence of a class of Peano curves is a Peano circle denoted as [Formula: see text], a circle of radius [Formula: see text] where [Formula: see text]. We interpret this two-dimensional (2D) Peano circle in our framework as a phase cell inside our 2D discrete phase plane. We postulate that a first quantized Planck oscillator, being very light, and small beyond current experimental detection, occupies this phase cell [Formula: see text]. The time evolution of this Peano circle sweeps out a 2D vertical cylinder analogous to the worldsheet of string theory. Extending this to 3D space, we introduce a [Formula: see text]-dimensional phase space hyper-tori [Formula: see text] as the appropriate phase cell in the physical dimensional discrete phase space. A geometric interpretation of this structure in state space is given in terms of product fiber bundles. We also study free scalar Bosons in the background [Formula: see text]-dimensional discrete phase space and continuous time state space using the relativistic partial difference-differential Klein–Gordon equation. The second quantized field quanta of this system can cohabit with the tiny Planck oscillators inside the [Formula: see text] phase cells for eternity. Finally, a generalized free second quantized Klein–Gordon equation in a higher [Formula: see text]-dimensional discrete state space is explored. The resulting discrete phase space dimension is compared to the significant spatial dimensions of some of the popular models of string theory.