Abstract
In this paper, we show that the quantum disk, i.e. the quantum space corresponding to the Toeplitz [Formula: see text]-algebra does not admit any compact quantum group structure. We prove that if such a structure existed the resulting compact quantum group would simultaneously be of Kac type and not of Kac type. The main tools used in the solution come from the theory of operators on Hilbert spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.