This paper examines the asymptotic performance of multiplication and the cost of quantum implementation for the Naive schoolbook, Karatsuba, and Toom-Cook methods in the classical and quantum cases and provides insights into multiplication roles in the post-quantum cryptography (PQC) era. Further, considering that the lattice-based PQC algorithm is based on polynomial multiplication algorithms, including the Toom-Cook 4-way multiplier as its fundamental building block, we propose a higher-degree multiplier, the Toom-Cook 8-way multiplier, which has the lowest asymptotic performance and implementation cost. Additionally, the designed multiplication will include additional sub-operations to complete the multiplication of large integers in order to prevent side-channel attacks. To design our Toom-Cook 8-way in detail, we employ detailed step computations such as splitting, evaluation, point-wise multiplication, interpolation, and recomposition, as well as several strategies to reduce space and time requirements. Existing asymptotic performance and quantum implementation cost multipliers are compared with our 2-way, 4-way, and 8-way Toom-Cook multiplier designs. Our Toom-Cook 8-way quantum multiplier has the lowest asymptotic performance analysis or qubit count in terms of space efficiency, with <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> ( 15/8 ) <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">log 15 /(2 log 15–log 8) log<sub>8</sub> <i>n</i></sup> or asymptotically <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">O</i> ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1.245</sup> ). The design has the lowest logical Toffoli counts bound at 112 <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">log<sub>8</sub> 15</sup> – 128 <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> and Toffoli depth of <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> ( 15/8 ) <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1– log 15 /(2 log 15–log 8) log<sub>8</sub> <i>n</i></sup> , asymptotically close to <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">O</i> ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1.0569</sup> ), which corresponds to a space- and time-efficient multiplication.