1. The amplitude of endplate potentials was increased by concentrations of butanedione monoxime (BDM, 5-20 mM) that typically caused muscle paralysis. 2. Although BDM slowed the decay of spontaneous miniature endplate currents, the effect was insufficient to explain most of the large increase in amplitude of endplate potentials. 3. The quantal content of endplate potentials was increased by BDM in a reversible, concentration-dependent manner. 4. The frequency of miniature endplate potentials was not changed by 10 mM BDM in the presence of normal or raised potassium concentrations, indicating that BDM does not change quantal content by a direct effect on calcium channels or on steady-state intracellular calcium concentration. 5. A change in the time course of the extracellularly recorded nerve terminal action potential caused by BDM was similar to the change produced by 4-aminopyridine (4-AP). 6. The increase in quantal content produced by BDM was only slightly reduced in the presence of 1 mM tetraethylammonium (TEA) but was significantly reduced in the presence of 0.5 to 1 mM 4-AP. 7. It was concluded that BDM blocks a 4-AP-sensitive potassium conductance in motor nerve terminals and, by increasing the duration of the action potential in this way, increases evoked transmitter release.
Read full abstract