Abstract

The possibility that multiple K+ conductances are present in mammalian motor nerve terminals was investigated by measuring the differential effects of tetraethylammonium (TEA) and 4-aminopyridine (4-AP) on transmitter release and on nerve terminal excitability in mouse phrenic nerve-diaphram preparations. Neither 4-AP nor TEA alter the spontaneous frequency of miniature end-plate potentials (fmepp) and therefore evidently do not affect calcium channels directly. Both 4-AP and TEA increased the quantal content of end-plate potentials (epps) evoked by nerve stimulation but the effects were not mutually exclusive; TEA continued to act in the presence of a maximally effective concentration of 4-AP. The increase in transmitter release evoked by focal polarisation of the terminal was not affected by 4-AP, whereas TEA exerted an effect consistent with a reduction in membrane conductance. Similarly, threshold for nerve terminal action potential generation was not affected by 4-AP, but TEA caused a reduction in threshold and alteration of the 'accommodation curve' indicative of a reduction of membrane conductance. Under conditions where one would predict no contribution of calcium K+ conductance, i.e., when release was evoked by Ba2+ in the absence of Ca2+, the different and non-competing effects of TEA and 4-AP were still apparent. It is concluded, therefore, that the motor nerve terminal possesses at least two K+ conductances, not including calcium activated gK, which may be distinguished pharmacologically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.