Abstract

Neostigmine (0.5-2 microM) caused fade of tetanic contractions (Wedensky inhibition) evoked by repetitive nerve stimulation. The mechanism underlying this action was studied in intact and cut isolated phrenic nerve-diaphragm preparations of mice. The fade was brought about by failure to elicit muscle action potentials. During fade, the muscle was unable to conduct directly evoked action potentials across the central endplate zone. Recovery of excitability occurred in 5 s with continued stimulation. In the presence of neostigmine, the resting membrane potential at endplate areas during repetitive stimulation decreased from -80 mV to less than -50 mV within the first 10 pulses at 75-200 Hz and thereafter recovered gradually to about -60 mV in the following 5 s during continuous stimulation. The quantal content of endplate potentials evoked by single stimulation was not reduced by neostigmine whereas that evoked by high frequency stimuli (75 Hz) was reduced to about 1/3 in 10 pulses. It is concluded that the fade of tetanic contraction caused by inhibition of acetylcholinesterase is induced by the inactivation of sodium channels in the area surrounding the endplates and that the sustained fade is due to a decrease of transmitter release. Both effects are the result of acetylcholine accumulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.