The thermal performance of a Peltier thermoelectric cooler (TEC) can be enhanced by multi-staging, modifying the geometry of the thermoelement, and using new material with improved thermoelectric properties. This study utilizes COMSOL multiphysics to simulate thermomechanical analyses of various geometries of thermoelectric coolers under pulse current conditions. This investigation explores the influence of pulse current parameters, such as pulse width, pulse ratio, and hot-side convective heat transfer coefficient, on a thermoelectric cooler with different leg geometries. Additionally, the impact of the TEC cold-side temperature, hot-side temperature, and thermal stress on both sides is discussed. The results indicate that TEC leg shapes, such as pin and trapezoid, exhibit the minimum cold-side temperature. Increasing the pulse ratio leads to a decrease in the cold-side temperature and an increase in the hot-side temperature. A notable improvement in the cold-side temperature is also observed with higher pulse ratios, with the pin geometry achieving a minimum cold-side temperature of 276 K. Furthermore, the cooling load affects the temperature on both sides of the TEC. These findings provide valuable insights for optimizing thermoelectric coolers for electronic cooling applications using pulse current methods.
Read full abstract