The protection of steel based on microbial biomineralization has emerged as a novel and eco-friendly strategy for corrosion control. However, the molecular basis of the biomineralization process in mineralization bacteria remains largely unexplored. We previously reported that Pseudoalteromonas lipolytica EPS+ strain provides protection against steel corrosion by forming a hybrid biomineralization film. In this study, we identified that a point mutation in the AT00_08765 (wspF-like) gene, responsible for encoding a chemotaxis protein that regulates swimming motility and polysaccharide production, is linked to the observed anticorrosion activity in EPS+ strain. The engineered point mutation mutant strain, designated Δ08765(707A), exhibited similar phenotypes to the EPS+ strain, including colony morphology and cellulose production. Importantly, we demonstrated that moderate swimming motility in Δ08765(707A) plays a pivotal role in the development of a protective mineralization film on the steel surface. Additionally, we found that Δ08765(707A) enhances biofilm formation by rapidly forming small aggregates in the initial stage of biofilm growth. This process facilitated the assembly of more compact and larger mineralization products, effectively inhibiting steel corrosion. In addition, Δ08765(707A) formed a uniform mineralization film that completely covered the steel surface, preventing the formation of sheet-like steel corrosion products. Therefore, this study demonstrates that an engineering strain carrying a point mutation in the AT00_08765 gene can significantly enhance the anticorrosion activity. This enhancement is accomplished through the formation of small bacteria-induced aggregates, followed by the development of larger mineralization products and the creation of a uniform organic-inorganic hybrid film.IMPORTANCEIn this study, we revealed that moderate swimming motility significantly influences the anticorrosion activity of marine Pseudoalteromonas. Furthermore, our study demonstrated that overproduction of cellulose facilitates cell aggregation rapidly during the initial stages of biofilm formation, thereby promoting the development of larger mineralization products and the formation of a uniform organic-inorganic hybrid film on the steel surface. Our findings provide new insights into the biomineralization mechanisms in Pseudoalteromonas lipolytica, potentially catalyzing the advancement of an eco-friendly microbial-driven approach to marine corrosion prevention.
Read full abstract