Abstract

Modifying the commercial melamine sponge (MS) that intrinsically possesses highly porous open-cell structure with graphene oxide (GO) or GO-based nanocomposites (NCs) is a facile, effective, and low-cost route to fabricate three-dimensional (3D) porous materials with multifunctionality. Herein, we fabricated two types of 3D MSs that were separately functionalized by the reduced GO (RGO) sheets and Ag/RGO NC through combined methods of chemical reduction and immersion process. The simple immersion process brought out the transition of superhydrophilic MS to highly hydrophobic RGO-MS and Ag/RGO-MS. Due to the unique surface topography and high porosity, the RGO-MS exhibited remarkable absorption capacity of 41–91 times its own weight for a wide range of oils and organic solvents. Both the RGO-MS and Ag/RGO-MS showed excellent oil-water separation efficiencies. The Ag/RGO-MS not only exhibited outstanding absorption capacity and recyclability, but also possessed ideal antibacterial performance towards bacteria of Staphylococcus sciuri, Shewanella MR-1, Pseudoalteromonas lipolytica, and Vibrio natriegens. The Ag/RGO-MS featured with hydrophobicity and antibacterial activity is a promising candidate for potential applications in oil-spill disposal and water disinfection. This study provides an effective strategy for designing and fabricating the 3D porous materials with novel functionalities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call