This study explores the transfer of mass and heat within unstable two-dimensional flows of non-Newtonian material under conditions involving radiation generation, absorption, and thermal radiation. Additionally, it investigates the impact of magnetic hydromagnetic joule (MHD) heating on these processes. The researchers converted the partial differential equations into ordinary ones through appropriate transformations. Subsequently, a new idea was considered, involving coupling fractional differential equations using the AGM method, with an order of 0.5 < a <0.8 and the initial condition x (0) = x0. A new technique is introduced to find the exact solution of fractional differential equations by solving the correct order differential equations. The primary aim of this paper is to explore the impact of parameter variations on velocity, temperature, local skin friction coefficient, and local Nusselt and Sherwood numbers. This article investigates the effect of multi-parameter changes on local skin friction coefficient and Schmidt number. In most fluid heat transfer problems, especially in non-Newtonian fluids, fractional differential equations are widely used in liquids. The obtained results indicate that the Lorentz force, influenced by the magnetic field parameter (Ha), diminishes the velocity distribution. Additionally, it is observed that the temperature profile decreases as the radiation parameter (R) increases.
Read full abstract