In most cases, the operation of underwater acoustic sensor networks (UASNs) relies on accurate sensor location information. However, UASNs present more challenges than terrestrial sensor networks, such as the propagation speed variation with depth (i.e., stratification effect), asynchronous clock, node mobility, etc. In this paper, an efficient method of asynchronous localization is proposed by taking into account the stratification effect and node mobility. Firstly, a network is constructed that consists of surface buoys, AUVs, and target sensors. Secondly, an iterative least squares (LS) method is developed to locate AUV by establishing the relationship between propagation delay and location estimation. Thirdly, the passive mobility velocity of AUV is used to develop and solve the mobility model of the target sensors. Then, with the support of AUV, an asynchronous localization method is developed to estimate the target position, which improves the localization accuracy through motion and stratification compensation strategies. Moreover, the proposed method is validated through Cramer Rao lower bound (CRLB) analysis. Finally, simulation is performed to show that the proposed method is more efficient in reducing the estimation errors.
Read full abstract