Abstract
Due to the ability of sensor nodes to collaborate, time synchronization is essential for many sensor network operations. With the aid of hardware capabilities, this work presents a novel time synchronization method, which employs a dual-clock delayed-message approach, for energy-constrained wireless sensor networks (WSNs). To conserve WSN energy, this study adopts the flooding time synchronization scheme based on one-way timing messages. Via the proposed approach, the maximum-likelihood (ML) estimation of time parameters, such as clock skew and clock offset, can be obtained for time synchronization. Additionally, with the proposed scheme, the clock skew and offset estimation problem will be transformed into a problem independent of random delay and propagation delay. The ML estimation of link propagation delay, which can be used for localization systems in the proposed scenario, is also obtained. In addition to good performance, the proposed method has low complexity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have