TiO2 nanotubes are a prominent type of TiO2-based nanostructure compared to nanorod arrays. A promising way to improve photocatalytic performance is modifying TiO2 nanotubes with metals, either on the surface or inside the tubes. There is a substantial demand for enhancing the conductivity and charge separation of TiO2 nanotubes, with a major focus on gold (Au) modification. Gold (Au) coatings have significantly improved the photocatalytic activity of TiO2 nanotubes, particularly in pollutant oxidation. However, the mechanism underlying the action of Au-modified TiO2 nanotubes in photocatalytic nitrobenzene oxidation under electrochemical induction remains unclear. Therefore, we conducted related experiments to explore the optimal Au concentration under various conditions. Under electric field induction, the maximum removal rate achieved was 54.9%. Lastly, we analyzed the relevant photocatalytic mechanism to elucidate the responses of electrons and holes to a simulated contaminant under a photo-electrochemical field.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access