A novel and simple method combining in-situ acetylation, liquid-liquid extraction and gas chromatography-mass spectrometry (GC-MS) has been developed for the quantification of 10 bromophenols in urine, used as biomarkers of exposure to polybrominated diphenyl ethers. The analytical process involves an enzymatic hydrolysis of the bromophenol glucuronide fraction followed by an aqueous derivatization of the phenol group with acetic anhydride. A subsequent liquid-liquid extraction of the sample with hexane allows the injection of the organic layer, using a programmed temperature vaporizer, into a gas chromatograph coupled to a single quadrupole mass spectrometer. Quantification is performed by the standard addition method. Limits of detection are in the pg mL−1 range. Trueness, assessed in terms of percentages of recovery, varies between 100 % and 118 % in synthetic urine and between 79 % and 117 % in human urine. Precision, assessed at two different levels, 0.25 ng mL−1 and 2.5 ng mL−1, shows values of relative standard deviation below 14 % both in intra- and inter-day studies for both matrices. The method has been applied to the analysis of seven urine samples, measuring concentrations higher than the LOQ in three of them. These levels are in agreement with others found in literature, but they have been obtained by applying a much simpler and faster protocol. In addition, the replacement of silylating reagents by acetic anhydride, to derivatize the phenol moiety, provides a greener alternative to other GC-MS procedures published up to date.
Read full abstract