Abstract

In this study, prometryne and prometon were extracted and preconcentrated from aqueous media using an online solid-phase extraction-thermal desorption method coupled with gas chromatography-flame ionization detector (GC-FID), equipped with two different inlets: split and programmable temperature vaporizer (PTV). For this purpose, the applicability of Tenax and a metal-organic framework were investigated as solid-phase sorbents. Several effective parameters on the extraction efficiency, such as the amount of sorbent, sample volume, sample pH and thermal desorption procedure were optimized. The analytical performance of the proposed methods showed an excellent linear dynamic range for prometon and prometryne (0.25-100μg/L) and relative standard deviation less than 4.01%. Moreover, the detection limits below 0.20 and 0.35μg/L were determined for prometon and prometryne, respectively. Additionally, molecular docking was applied to clarify the adsorption nature and binding energy of MIL-101(Cr) toward the studied analytes, which indicated an appropriate correlation between computational and experimental results. Finally, the proposed method was developed and validated for prometon and prometryne and successfully applied for their extraction from agricultural water, spiked with prometon and prometryne through its direct introduction into the GC inlet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.