Abstract

Although oceans play a key role in the global selenium (Se) cycle, there is currently very little quantitative information available on the distribution of Se concentrations and Se speciation in marine environments. In general, determining Se concentration and speciation in seawater is highly challenging due to very low Se levels ((sub)ng⋅L−1), whereas matrix elements interfering Se pre-concentration and detection are up to the g⋅L−1 levels. In this study, we established a sensitive method for the determination of the various Se chemical fractions present in natural seawater, i.e. selenite (SeIV), selenate (SeVI), organic Se-II + Se0 and total Se, using species-specific isotope dilution gas chromatography coupled to inductively coupled plasma mass spectrometry (ID-GC-ICP-MS). We compared different derivatization reagents and optimized specific pre-treatment protocols, including a microwave assisted oxidation protocol for the determination of total Se and organic Se-II + Se0 using H2O2. To increase sensitivity, we developed an online pre-concentration method based on large volume injection (LVI) using a programmed temperature vaporization (PTV) inlet. Eventually, the developed method achieved low absolute and methodological detection limits, i.e., respectively, 0.1–0.3 pg and 0.9–3.1 ng.L-1 for the different fractions. The accuracy of our method was of 2% for a certified reference material (CRM) diluted in artificial seawater while the precision was better than 4% for a freshwater CRM in artificial seawater matrix as well as two common seawater CRMs certified for trace elements excluding Se. As a proof-of-concept, we quantified the various Se fractions in a large number of natural water samples from the Baltic and North Seas, encompassing a wide range of salinity (7–35 psu), which shows that its detection limits are sufficient to determine total Se, SeIV, SeVI and organic Se-II + Se0 concentrations in brackish and marine systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.