Herein, through knitting benzylated β-cyclodextrin (BnCD) by dimethoxypillar[5]arene (P[5]), porous copolymers (P[5]-BnCDs) containing two kinds of macrocycles were synthesized with yields not <97 %. The molar ratio of P[5]/BnCD greatly influenced the P[5]-BnCDs' porosity and adsorption performance. When the molar ratio of P[5]/BnCD was 4/1, the P[5]-BnCD (4-1), demonstrated a surface area up to 515.95 m2/g and showed fast adsorption kinetic, high adsorption capacity and good reusability towards the model organic micropollutants (OMPs). The adsorption fitted well with the pseudo-second-order and the Langmuir models, while the thermodynamic studies revealed spontaneous physisorption process. The adsorption mechanism was dominant by host-guest and hydrophobic interactions and the adsorption at environmentally relevant concentrations experiments showed the practicality and superiority in extraction of the OMPs at μg/L level. This study paves a way for the development of versatile porous organic polymers with multiple macrocycles for efficient removal of OMPs from water.
Read full abstract