Abstract

Two sodalite phases (potassium sodalite (K.SD) and sodium sodalite (Na.SD)) were prepared using alkali fusion of kaolinite followed by a hydrothermal treatment step for 4 h at 90 °C. The synthetic phases were characterized as potential adsorbents for PO43− from the aqueous solutions and real water from the Rákos stream (0.52 mg/L) taking into consideration the impact of the structural alkali ions (K+ and Na+). The synthetic Na.SD phase exhibited enhanced surface area (232.4 m2/g) and ion-exchange capacity (126.4 meq/100 g) as compared to the K.SD phase. Moreover, the Na.SD phase exhibited higher PO43− sequestration capacity (Qmax = 261.6 mg g−1 and Qsat = 175.3 mg g−1) than K.SD phase (Qmax = 201.9 mg g−1 and Qsat = 127.4 mg g−1). The PO43− sequestration processes of both Na.SD and K.SD are spontaneous, homogenous, and exothermic reactions that follow the Langmuir isotherm and pseudo-first-order kinetics. Estimation of the occupied active site density validates the enrichment of the Na.SD phase with high quantities of active sites (Nm = 86.1 mg g−1) as compared to K.SD particles (Nm = 44.4 mg g−1). Moreover, the sequestration and Gaussian energies validate the cooperation of physisorption and weak chemisorption processes including zeolitic ion exchange reactions. Both Na.SD and K.SD exhibit significant selectivity for PO43− in the coexisting of other common anions (Cl−, SO42−, HCO3−, and NO3−) and strong stability properties. Their realistic application results in the complete adsorption of PO43- from Rákos stream water after 20 min (Na. SD) and 60 min (K.SD).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call