Let K be a finite simplicial, cubical, delta or CW complex. The persistence map PH\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{PH}$$\\end{document} takes a filter f:K→R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$f:K\\rightarrow \\mathbb {R}$$\\end{document} as input and returns the barcodes of the sublevel set persistent homology of f in each dimension. We address the inverse problem: given target barcodes D, computing the fiber PH-1(D)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{PH}^{-1}(D)$$\\end{document}. For this, we use the fact that PH-1(D)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{PH}^{-1}(D)$$\\end{document} decomposes as a polyhedral complex when K is a simplicial complex, and we generalise this result to arbitrary based chain complexes. We then design and implement a depth-first search that recovers the polytopes forming the fiber PH-1(D)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extrm{PH}^{-1}(D)$$\\end{document}. As an application, we solve a corpus of 120 sample problems, providing a first insight into the statistical structure of these fibers, for general CW complexes.