Abstract
Deep learning-based ship-detection methods have recently achieved impressive results in the synthetic aperture radar (SAR) community. However, numerous challenging issues affecting ship detection, such as multi-scale characteristics of the ship, clutter interference, and densely arranged ships in complex inshore, have not been well solved so far. Therefore, this article puts forward a novel SAR ship-detection method called multi-level feature-refinement anchor-free framework with a consistent label-assignment mechanism, which is capable of boosting ship-detection performance in complex scenes. First, considering that SAR ship detection is susceptible to complex background interference, we develop a stepwise feature-refinement backbone network to refine the position and contour of the ship object. Next, we devise an adjacent feature-refined pyramid network following the backbone network. The adjacent feature-refined pyramid network consists of the sub-pixel sampling-based adjacent feature-fusion sub-module and adjacent feature-localization enhancement sub-module, which can improve the detection capability of multi-scale objects by mitigating multi-scale high-level semantic loss and enhancing low-level localization features. Finally, to solve the problems of unbalanced positive and negative samples and densely arranged ship detection, we propose a consistent label-assignment mechanism based on consistent feature scale constraints to assign more appropriate and consistent labels to samples. Extensive qualitative and quantitative experiments on three public datasets, i.e., SAR Ship-Detection Dataset (SSDD), High-Resolution SAR Image Dataset (HRSID), and SAR-Ship-Dataset illustrate that the proposed method is superior to many state-of-the-art SAR ship-detection methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.