Abstract

The Boundary Node Method (BNM) is a meshfree scheme for solving Boundary Integral Equations (BIE). BNM simplifies the problem at two levels. Primarily, as BNM aims to solve the integral form of the governing equation, is reduced dimensionality of the problem by one order. Additionally, the mesh-free scheme eliminates the need for meshing, proving particularly beneficial for problems involving complex geometries. In this study, BNM is formulated using Element Free Galerkin (EFG) scheme to solve interior and exterior problems in acoustics. A 3-dimensional linear basis is used to construct moving least square shape functions. This eliminates the need to define additional local or parametric coordinate systems, making the method easily applicable to any arbitrary geometry. To illustrate the capabilities of the proposed method, four example problems are solved. An open pipe at resonance and a simple expansion muffler are analyzed to validate BNM’s performance in solving interior problems. Radiation from a pulsating sphere and radiation from a sphere with harmonic velocity excitation are analyzed as examples of exterior problems. Results from all four sample problems indicate that the BNM scheme proposed for solving acoustic problems is accurate and robust.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call