The design and manufacturing of graphene and hBN-based nanocomposites is taking the era of material design to new horizons. The present article employs MD simulations to investigate the mechanical, fracture, and interfacial behaviour of the Ti-based nanocomposites reinforced with pristine as well as defective single and bi-crystalline hBN nanosheets. The nanocomposites exhibited over ∼100 % improvements in the failure strengths as compared to pristine Ti matrices. Reinforcement of the Ti matrices with single and bi-crystalline hBN nanosheets improved the failure strengths of the nanocomposites from 4.06 GPa to 9.74 GPa and 9.80 GPa, respectively. However, an increase in vacancy defect (Single or Di-vacancy) concentration (0–6%) resulted in a successive reduction of the failure strength of the nanocomposites. Moreover, the deformation mechanisms in Ti matrices reinforced with pristine and defective nanosheets were observed to be governed by {101‾1} <101‾2‾ > compression twin and {101‾0} <112‾0 > prismatic slip dislocations, respectively. Furthermore, the pull-out and pull-up velocities models of interfacial shear and cohesive strengths, respectively, were employed to confirm the observed results.